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Gauge theory description of spin ladders
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Received 3 September 1997

Abstract. An s = % antiferromagnetic spin chain is equivalent to the two-flavour massless
Schwinger model in a uniform background charge density in the strong coupling regime. The
gapless mode of the spin chain is represented by a massless boson of the Schwinger model.
In a two-leg spin ladder system the massless boson aquires a finite mass due to inter-chain
interactions. The gap energy is found to be abo@6/0’| when the inter-chain Heisenberg
coupling J" is small compared with the intra-chain Heisenberg coupling. It is also shown
that a cyclically symmetriaV,-leg ladder system is gapless or gapful for an odd or even
respectively.

An s = % spin chain with antiferromagnetic nearest-neighbour Heisenberg couplings is

exactly solved by the Bethe ansatz [1] and has a gapless excitation. A two-leg spin ladder
consists of two spin chains coupled to each other. Experimentally a two-leg spin ladder
system has no gapless excitation [2-5]. The gapless mode of spin chains does become
gapful. In this paper we give, without resorting to numerical evaluation, a deductive
microscopic argument which shows why and how this happens.

Spin ladder systems are not exactly solvable and various approximation methods have
been employed in the literature [6-11]. We first show thatsas- % spin chain is
equivalent to the two-flavour massless Schwinger model in the strong coupling regime
in a uniform background charge density. The two-flavour Schwinger model has a massless
boson excitation, which corresponds to the gapless excitation in the Bethe ansatz. A spin
ladder system is described as two sets of two-flavour Schwinger models which interact with
each other by four-fermi interactions.

An antiferromagnetic spin chain is described by
Henain(S) = J Y Sy Sy (J >0) @)
whereas a two-leg spin ladder is described by
Hagded'S, T) = Hchain(S) + Hehain(T) + Hrung(S, T')
Hung(S. T) = 1" S, - T,. @)

Consider first an = % antiferromagnetic spin chaiHcnqin(S). We express the spin operator
in terms of electron operators I, = ci%crc,,. With the aid of the Fierz transformation
we have #,, - S,,1 = —{clcﬁl, cchn} +1-— (clcn — 1)(cj,+lcn+1 —1). We can drop the

last term, as the half-filling conditios,c, = 1 is satisfied for a spin chain. The first term is
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linearized by introducing an auxiriary field, or by the Hubbard—Stratonovich transformation.
The HamiltonianHqnain is equivalent to the Lagrangian

B . J ,
lgmzzjmﬁg—M@%—n—Zwﬂa—mdgﬂ—wdﬂm}. (3)

U, is a link variable, defined on the link connecting siteandrn + 1. 1, is a Lagrange
multiplier enforcing the half-filling condition at each site. The transformation is valid for
J > 0. The LagrangiarLgpin has localU (1) gauge invariance.

We consider a periodic chain a¥ sites: Sy.1 = Si. The mean-field energy is
evaluated, supposing/,| = U, t0 be Emean= J{2NU? — U cot(r/N) + 3N}. For large
N it has a sharp minimum df = 1/7. Radial fluctuations ot/,,’s are suppressed, though
guantum fluctuations of the phase ©@f’'s cannot be neglected. We write

1 .
U, = - (4)
T

where/ is the lattice spacing. We need to incorporate quantum fluctuatiohs afid A, to

all orders. With (4) substituted the Lagrangian (3) becomes that of lattice electrodynamics.
To make this point clearer, we take the continuum limit. For an antiferromagnetic spin

chain, two sites form one block. The even—odd site index becomes an internal (spin) degree

of the Dirac field in the continuum limit. The correspondence is given by

(a) (_i)Z.yfl .
Yy (x) = N €25 1.4 at odd site
5
@ (_i)Zr ) ( )
vy (x) = N C2s.a at even site
where x corresponds to(2s — 1)¢ and 2¢. With the given normalization

{1//;“)(x), ¥” (y)1) = 648,18, (x — y) in the continuum limit, wherg, (x) is the periodic
delta function with the period = N¢. The phase factors in (5) reflect the Fermi momentum
kr = +3m at the half filling.

The termY", chc,11 + hermitian conjugate (h.c.) becomed X7, [ dx (y1*79,y5” +
¥$79,4.\”). Hence in the continuum limit the original spin Hamiltonian (1) is transformed
to a system with the Lagrangian density

2 R P SE @ 1 JN
chail As V1 = a2 X;C‘ﬂ Y ('hau - cA“) v+ ZAO ~on (6)

Here the Dirac matrices arg® = o3, y! = io,. The ‘light' velocity ¢ is given by

¢ = ¢J/mh. xo = ct and (Ag, A1) = (A,cA). Although the Maxwell term is absent

in the ¢ — O limit, it is generated at finit¢. The coupling constard must be expressed

in terms of J and ¢. From the dimensional analysi€ = k?J /¢ wherek is a constant of
O(1). Note that in theZ — 0 limit with ¢ kept fixed,e? diverges ag 2.

This is nothing but the two-flavour massless Schwinger model in the strong coupling
regime in a uniform background charge density. The tagy¥ representing the background
charge arises from the half-filling condition. The system is neutral as a whole.

Note that the spin index of original electrons becomes a flavour index in (6), while
the even—odd indey becomes a spin index of the Dirac fiedd® (x). The two-flavour
nature reflects the electron sp%n

The correspondence of the spin chain model to quantum electrodynamics ) Q&D
been noted in the literature, but the rigorous derivation has not been given before [12]. In
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particular, the importance of the two-flavour nature has not been recognized. Mapping to
SU(2) gauge theory has also been suggested [13].

The two-flavour massless Schwinger model is exactly solvable [14]. Quantum
fluctuations of all fields,s and A,, can be completely taken into account. With the
periodic boundary condition, the model is two-flavour QEI2fined on a circle, which has
been analysed in detail by the bosonization method [15-17].

The bosonization formula for the left- and right-moving components of the Dirac fields
is

I/fi (f, .X) — iciéti{q;+2npi(tix)/L]No[eii«/ﬁdﬁ‘t(t,x)] (a — 1, 2) (7)
VL
a—1

where C¢ = @7 Xia(i+r) and €¢ = &7 Xmi—rD . g (%) represents left- (right)

moving modes. Ny[] denotes the normal ordering in a basis of massless fields. The
Hamiltonian becomes [17]

e2L 2 whe Ow \?
Hain = TPVZV‘F”Z;Z {Qaz‘l' <Q5a+]_:v) }
L T 2
+/ dxhc<12q)2+q>/2+26_q>2+1xz+x/2> (8)
0 2 \c¢ whe c?
The neutrality condition read®, + Q> = L/¢ = N. ®y and Py are the Wilson line
phase Bv = exp[(i/ic) fOdeAl] and its conjugate momentumQ, = —p; + p, and
0s, = p + p, are charge and axial charge of thih flavour, respectively, both of which
take integer eigenvalues and commute with the Hamiltonidn.= (¢1 + ¢»)/+/2 and
X = (¢1 — ¢2)/~/2 whereg, = ¢4 +¢* and [ dx ¢, = 0.
The @ field has a Schwinger mags where u? = 2¢%h/mc3. The excitation energy
is uc? = V/2kJ/m ~ 0.45kJ. The x field is massless, which corresponds to the gapless
excitation in the spin chain and controls the behaviour of correlation functions at large
distances. The wavefunction for the zero mode part is written as

W) = Z/dpw |pw . n, r)€ " EIIY £ (py g+ Tpw)

9
Pw|pw,n,r) = pwlpw,n,r) ®)
pilpw,n,r) = (n+r8u1F 3N)pw,n,r)
where f (pw, ¢) must solve the Scbdinger equation

K(pw, o) f(pw,¢) =€f(pw.¢)

92 02 ucLpw 2 (10)
K ) T A A A T = .

(P ) 2opy,  09? < 2h )

For the ground statg (pw, ¢) = constant e7#eLpiv /4,

In the Schwinger model there istaparameter characterizing states. The wavefunction
(9) corresponds té = 0. Thef vacuum originates from the invariance under large gauge
transformatins and the chiral anomaly in the continuum theory [16]. In the lattice spin
systems the lowest energy state with= 0 is expected to be singled out.

Employing the bosonization formula, the critical exponent of the spin—spin correlation
function (S(2n)S(0)) ~n~" (n > 1,n <« N) is found to ben = 1, which agrees with the
result from the Bethe ansatz.
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Now we consider a spin ladder system (2). In the absence of the inter-chain rung
interaction (/’=0) the system is equivalent to the two sets of two-flavour massless Schwinger
models described by . [A,, ¥]1+ L2 {A.. ¥]. With the aid of the correspondence (5),
the inter-chain interactioiung in the continuum limit is written as

J'N g e - oy -~ = - = .
Hing= "5+ 5 | & @ )+ vy 91 + g, vl + vy 99y (A1)

where every quantity in the expression is a flavour singlety = Y2_, @@ etc.
Note that both charge and scalar density operators appear in (11). The chiral symmetry is
broken, which leads to mass generation.
When expressed in terms ¢f. and /., H;f’mg contains many terms. The Hamiltonian
is simplified in the large volume limi. = N¢ — oco. We definep, = ¢ @Ty@,
M, = wi“”wf‘”, and the corresponding, and M,. The relevant terms irHr?mg are
HE.,~ Ha, + Hz

rung
J'e dr - -
Hz, = e / (p1 — p2) (1 — 02) (12)

J'e -
/dx {(M1 — Mp)(M] — M;> + (h.c)l.

Hz, = Z

Terms of the formM, M, are suppressed as fluctuationsp are small compared with the
averagen /2.

Boson fields associated with and are denoted by®, x) and(®, %), respectively.
We introduce a new orthonormal basi®.. = (® + ®)/+/2 andx. = (x £ ¥)/v/2. The
first term in (12) is

J'e

Hay = o
Y

- - J'e
(01— 02)(01— 02) + f dx E«axmz —@x)%. (13)

It changes the propagation velocities yof fields.
It follows from (7) that

MaMZ _ e—Zm(Qa—Qb)x/Le_'(q"_q”)ﬁNo[e_"/E@”_%)]- (14)

Note that No[e#*] = B(mcL/R)F*/*" N,,[e#X] where the reference mass in the normal
ordering N[ ] is shifted from 0 tom. B(0)=1 andB(z) ~ e"z/4m for z > 1 [16]. That
is, if all fields become massive, (14) is nonvanishing in the> oo limit. Otherwise (14)
vanishes. In passing, terms not included in (12) are suppressed exponentially.in-thso
limit when x.. fields aquire masses.

There are fluctuations i®,. Write 01, = N £ 0 and 01, = 3N £+ 0. Important
terms in [ dx M, M, result whenQ = +0. Since|Q|, |Q| < N, we have in the large
volume limit

J'e e\ o _
Ho — _ dx e q1—q0) NTe—ivaT (®-+X-)
» = (4nh> / (1o { [ ]

_i_e_i(qZ_qZ)N[e—im(q),—)(,)]}
— o [y {e—i(ql—liz)N[e—i«/ﬂ@,-&-m)] + e—i(qz—fh)N[e—i\/E(CD,—XJr)]} +hc]
My, .c.].
(15)
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Here we have defineth, = (d+®)/v/2 andy. = (x £5)/+/2. N[e~ V4 (@-+1)] denotes
that the®_ and x_ fields are normal-ordered with respect to their magses and ., _,
respectively.

Hj3, has two major effects. It gives an additional potential in the zero mode sector:

Jt (e ? —i(g1—q1) —i(g2—q2)
AHyero= LT m Mo {Mx, [e +e ]
_MM[e*i(qréz) +e*i(‘]2*‘?1)] + (h.c)l. (16)
Secondly it gives additional masses®a and x.. For small|J'| <« J
) e’ J't o o
ui = eil(qrq1)> — Uy, (eil(qrqz)))
47 he
e J'e o
2 _ eil(th—ql) 17
My 47 Tic — Mo My ) (17)
2y g/
e’V J'E
)2(+ = E Tic Mo Ky, (eh(ql 112))

Here we have made use @ (@1—d)) = (gtile2—42)) gnd (eH@1—2)) = (gH@2—)) which
reflects the up—down symmetry of the original spin system and is justified shortly.

The wavefunction of the ladder system is specified ity , ¢; pw, ¢) asin (9). The
rung interaction (16) gives an additional potential in theepresentation.'& and é2 give
rise to &~7Pv and e'¢~17Pv | respectively. f satisfies

{(K(pw, o) + K(pw, @) + Vrung}f =e€f
(18)

Je [ e’c\? - - -
Viung = LGﬁc <M> Mo {ty COSp — @) — uy, COSp + @)} cost(pw — pw).

For largeL the potential term dominates in equation (18). The ground-state wavefunction
has a sharp peak at the minimum of the potential. For= 0 (J' < 0), the minimum
occurs atpy = pw =0 andp = —¢ = 17 (¢p = ¢ = +17) so that
(eii(qa—qu — eil(ql qz) eil(qz q1) =F1 for J >0 (19)
J < 0.

The masses are determined by (17) and (19):

Ho_ = " My = Hy, = e
V1 — 22 1— 22 (20)
e eI |J|
47 he 4
The expression is valid for smadl. The excitation energy, a spin gap, is
A — 2. 2_ €7k _
spin = My, C Kpce = %2, |J'| = 0.36k|J'|. (21)

The ratio of Aspinto uc? is k. The gapless mode becomes gapful. The spin gap is determined
by |J’|, generated irrespective of the sign Bt The energy density is lowered:
AZ
N — L 22
20J (22)
We have shown that the rung interaction breaks the chiral symmetry of spin chain
systems, and generates a spin gap.
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In the literature the spin gap has been determined by various numerical methods for
varying J'/J [8]. In particular, Greveret al obtainedAgpin = 0.41J’ for small J'/J and
0.50J’ for J’ = J, which is consistent with our prediction (21).

It has been well known that spin chain systems are mapped to nonlinear sigma models
[18]. Sierra has applied this mappingA@-leg ladder systems of spi§y and has shown that
the spectrum is gapful or gapless for an integer or half-odd-int8ggr respectively [9].

The mapping to sigma models is valid for lar§&/, > 1, while our method of mapping to
the Schwinger model works faf = 3.

The method of bosonization has been employed in the spin ladder problem. Schulz, in
analysing a spir§ chain, expressed as a sum of 2 spin-% vectors, thereby transforming
the spin chain to a special kind of a spgriadder system. With the aid of bosonization and
renormalization group analysis he concluded that the spectrum is gapless for a half-odd-
integerS.[10]

More recently a 2-leg = % ladder system has been analysed by bosonization by Shelton
et al and by Kishine and Fukuyama [11]. They have obtained a similar Hamiltonian to
ours, but could not determined the gap. Our bosonization formula (7) is a rigorous operator
identity with no ambiguity in normalization, with which the Hamiltonian is transformed in
the bosonized form. The correct treatment of the normal ordering is crucial in dealing with
the mass (gap) generation. Not only the light modes) (but also the heavy mode®{)
and zero modesH, g,) play an important role, which has been dismissed in [11].

Our argument can be generalized M-leg s = % ladder systems. Inter-chain
interactions are given byung = Z(U) J/j > S,(PS,S") wherei and j are chain indices
and (ij) labels rung pairs.J;; = 2J for all (ij) in Schulz’ model in [10].

Let us consider a cyclically symmetric antiferromagnetic ladder system in which
nonvanishingJ/;;'s are J;, ., = J' > 0 whereJg , ., = Jy ;. Among boson fields
®;’s or x;'s, the singlet combination is denoted By, or x,.. Other combinations ob’s
or x's are degenerate. There are four masses to be determingdand u,,. pe, ~ u
for small|J’|. The issue is whether or not ail fields become massive. The crucial part is
the mass ofy..

Repeating the above argument, one finds that the part of the rung potgmfiah (18),

Wy COSp — @) — uy, COSp + @), is replaced by

N, Ne
My 21: CoOSy; — @it1) — MiﬁMﬂt(Z/M) 21: cos@; + ¢i+1) (23)
1= 1=

wheregy, 11 = ¢1. If n,, =0, Viung= 0 and no correction arises fere, or wu,,. This
solution has a higher energy density than the non-trivial solution soithat# 0. From
the symmetryViyng is minimized at co; —¢;11) = f- (i =1, ..., N¢). This implies that
¢ =¢+ (j —Dnandn = 2pw /N, or 2pz/(N, — 2) wherep is an integer.

Supposeu,, # 0. Then cosp; + ¢iv1) = f+ (( = 1,...,N;). This leads to an
additional condition thay = . All of these conditions are satisfied for an evdp The
potential is minimized atp,1 = :t%n and ¢, = :F%n. For an oddnN, the conditions
cannot be satisfied.

If u,, =0, n need not ber. This gives a solution for an od¥,. For an evenv,,
this solution yields a higher energy density than the solution with # 0 above. To
summarize, the spectrum is gapless for an @dd but is gapful for an evenv,. The
interaction is frustrated in the rung direction for an ol The argument here is similar
to Schulz’ in [10].

In the experimental samples [4] ~ J so thatc = O(1). For instance, in SrG®D; (2-
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leg ladder),J ~ J" ~ 1300 K andAgpin ~ 420 K. The formula (17) need to be improved

by taking account of effects of the nonlinear terms in (15). Further, it is observed that
spin ladder systems with three legs are gapless. (The experimental sample is not cyclically
symmetric: J{, = Jy;3 ~ J but Ji; = 0.) For this the large value of is important, as our
analysis indicates that a gap is generated so longiassufficiently small. It has also been
reported that the spin gap is not affected by nonmagnetic impurities [5]. We will come back
to these points in separate publications.

This work was supported in part by the US Department of Energy under contracts DE-
FG02-94ER-40823.
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